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Abstract Algebra – II Rings and Algebras (环理
论与代数)

2.5 notes, 2.8 Localizations

2012 年 12 月 12 日
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Outline

Unique Factorization domains
Irreducible Polynomials

Localizations (环的局部化)
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2.5.1 Irreducible Polynomials
Proposition (Eisenstein’s criterion)
Given a field F = K[R] that is the field of fractions of a unique
factorization domain R. Given further a polynomial
Q = a0 + · · ·+ anxn ∈ R[x] and an irreducible p ∈ R such that

1. an is not divisible by p,
2. a0,…,an−1 are divisible by p,
3. a0 is not divisible by p2,

then Q is irreducible in F[x].
The problem is that the criterion cannot be applied to every
irreducible polynomial. Using more localizations one can derive
better irreducibility tests which we will briefly discuss in
Section 2.8.
Instead we should consider a few more properties of polynomials
over an UFD (such as a PID).
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Irreducible Polynomials II

The following result is already due to Euclid:
Proposition (Euclid)
Given a UFD R, then R[x] contains infinitely many different
irreducible polynomials.

Remark
All the polynomials of degree 1 are irreducible. If R itself has
infinitely many elements, then the x − r ∈ R[x] for r ∈ R are all
different.
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Irreducible Polynomials III
Proof.
Assume for the sake of an indirect proof that p1, . . . , pN are all
different irreducible polynomials. Consider now their product
P := 1 +

∏n
k=1 pk. Since the list contains at least the linear monic

polynomials the product has degree at least 2. Thus it is not a unit
and not 0. But none of the pk divides P, because it has remainder
1. On the other hand P does factor into a product of irreducible
polynomials. Therefore there must be at least one other
polynomial pn+1 that divides P. This is a contradiction to an
assumed finite list.

Theorem
Given a UFD R, then the polynomials over R (in one more
indeterminate) form a UFD.
The first proof of the theorem was discovered by Gauss in the case
of Z[x] and uses the following notions:



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

. . . . . . . . .

. . .

Unique Factorization domains
. .. . . .
. .

Localizations (环的局部化)

Primitive Polynomials and Content
Definition
Given a polynomial p ∈ R[x] where R is a UFD. We say that p is
primitive if there is no irreducible q ∈ R such that q divides all
coefficients of p.
The following lemma is immediate and its result will help in the
proof of the Theorem.
Lemma
Every non-zero polynomial p ∈ F[x] where F = K[R] is the field of
fractions of a UFD R can be written in the form p = up∗ where
u ∈ F∗ and p∗ ∈ R[x] primitive.
We denote u ∈ F[x] the content of p. The content of a primitive
polynomial is thus 1 (or any other unit u ∈ R∗).
Lemma (Gauss)
The product of two primitive polynomials is primitive.
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Primitive Polynomials and Content II

Proof.
Let p, q ∈ R[x] be primitive polynomials over the UFD R with
coefficients p = p0 + p1x + · · ·+ pmxm, q = q0 + q1x + · · ·+ qnxn.
And let r ∈ R be any irreducible element. Since p and q are
primitive, not all of the pi, qi are divisible by r. Let k be the
smallest i such that r does not divide pi and l the smallest i such
that r does not divide qi. But then r divides all pi with i < k and
all qj with j < l. Thus in particular for
pq = c0 + c1x + · · ·+ cm+nxm+n, p does not divide
ck+l =

∑
i+j=k+l

i<k or j<l
piqj + pkql.

Proposition
A polynomial p ∈ F[x] over the field of fractions of a UFD R,
F = K[R], then p is irreducible iff p∗ ∈ R[x] is.
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Primitive Polynomials and Content III

Proof.
We may assume that deg p ≥ 1. If p is not irreducible over F[x],
then there are f, g ∈ F[x] with p = fg. But then also
p∗ = (fg)∗ = f∗g∗ by the last lemma and thus p∗ factors over R[x].
If on the other hand p∗ = fg for some f, g ∈ R[x]. Since p is
primitive, so must be f and g. In particular each of them has
degree at least 1. But then also p = up∗ = ufg is not irreducible in
F[x].

Remark
To say it more explicitely, the irreducible elements of R[x] are the
irreducible elements of R together with the p∗ ∈ R[x] where
p ∈ F[x] is an irreducible polynomial. In particular all the p∗ are
primitive.
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Proof of the theorem

We work by induction over the number of indeterminates. Let us
thus restrict to the case of one indeterminate. In order to show
that R[x] is a UFD, we consider F := K[R], because R is in
particular a domain, and embed the polynomials R[x] ⊂ F[x]. In
the latter case we have already shown (see Proposition 2.5.2) that
these form a UFD. Assume thus that p ∈ R[x] ⊂ F[x] factors as
p = p1 . . . pn with pi ∈ F[x]. By extracting the content, we can
write p = uP1 . . .Pn where Pi ∈ R[x] and pi = uiPi,
u = u1 . . . un ∈ F. If ui ∈ R∗, then also pi ∈ R[x] and thus we can
keep this factor. If there are some pi /∈ R[x] it means that also the
corresponding ui /∈ R. We are thus left with factoring the
polynomials p for which all pi /∈ R[x], but then the polynomial is
irreducible over R, while we claim that it splits over F[x]. This is a
contradiction to Proposition 2.5.12.
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Proof of the theorem II

It remains to show uniqueness of the factorization. Let thus
p = p1 · · · pm = q1 · · · qn with pi, qi ∈ R[x]. From the uniqueness of
factorization over F(x) we know that there is a bijection between
the polynomials that are not constant, i.e. pi = uiqσi for ui ∈ F∗

and 1 ≤ i ≤ m′ ≤ m. If the pi are irreducible over R, then they
must be either constant or of degree at least 1 and primitive. But
then the ui ∈ R∗ and the remaining pm′+1 · · · pm as well as the
remaining qm′+1 · · · qn must multiply to an element of F∗. Since all
pi are primitive and of degree at least 1 and p∗ is primitive as well,
we have p∗ = up1 · · · pm′ = u′qσ1 · · · qσm′ as well as the content of
p equal some element in R, u−1pm′+1 · · · pm = u′−1qσ(m′+1) · · · qσn.
But since R is a UFD, we know that we can modify the bijection σ
such that pi = uiqσi also for m′ + 1 ≤ i ≤ m, ui ∈ R∗ and in
particular n = m. This completes the proof.
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Example
1. We already know that the integers Z form a UFD, because

they are a PID. Therefore also Z[x], the polynomials with
integer coefficients, form a UFD. Note that they are no longer
a PID.

2. In the same way polynomials in countably many
indeterminates over a UFD (e.g. a field) form a UFD, because
every (finite) polynomial lies in an extension with finitely
many indeterminates which form a tower of UFDs.
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Exercises

Exercise
Show that every family of elements ai ∈ R of a UFD has a

a. greatest common divisor;
b. least common multiple, if the family is finite;
c. show that there is an infinite family of elements that do not

have a finite non-zero least common multiple.
Hint: You cannot assume that a UFD is a PID, but nevertheless
the gcd is determined uniquely by the common irreducible divisors
modulo equivalence, while the lcm is determined by the union of
all irreducible divisors modulo equivalence.
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Exercise
Find a UFD R together with two elements a, b ∈ R such that their
greatest common divisor cannot be written as a linear combination
gcd(a, b) = fa + gb for any f, g ∈ R.

Exercise
Prove the following: Assume R is a UFD, I ◁R any ideal and
π : R → R/I the quotient map. If f ∈ R[x] is monic and
fπ ∈ (R/I)[x] irreducible, then p is irreducible over R.
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Exercise
Apply the previous result to show that the following polynomials
are irreducible in Q[x]:

a. x3 − 10,
b. x3 + 3x2 − 6x + 3,
c. x3 + 3x2 − 6x + 9,
d. x3 − 3x + 4.
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Localizations (环的局部化)
Remember the trick in the proof of Eisenstein’s criterion
(Proposition 2.5.4). Given a polyonomial Q ∈ R[x] over an integral
domain R together with a prime ideal p ◁R, then Q reducible in
R[x] implies that Qp is reducible in (R/p)[x], because the projection
π : R[x] → (R/p)[x] : a 7→ a + p, x 7→ x can be extended as a ring
homomorphism. Therefore, given a prime ideal p ◁R such that Qp

is irreducible, then also Q must be irreducible.
You will see in the homework what can be done if there is no prime
ideal p ◁R such that Qp is irreducible, but you have the strong
feeling that Q should be irreducible.

The biggest problem that prevents us from constructing the
quotient field of an arbitrary (commutative) ring R are the zero
divisors. Namely if we write a/b for some a, b ∈ R we do not only
have to exclude b = 0, but also every possible d1/2 such that
d1d2 = 0, i.e. the zero divisors, because they would eventually lead
to (1/d1)(1/d2) = 1/0.
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Localizations (环的局部化)
Remember the trick in the proof of Eisenstein’s criterion
(Proposition 2.5.4). Given a polyonomial Q ∈ R[x] over an integral
domain R together with a prime ideal p ◁R, then Q reducible in
R[x] implies that Qp is reducible in (R/p)[x], because the projection
π : R[x] → (R/p)[x] : a 7→ a + p, x 7→ x can be extended as a ring
homomorphism. Therefore, given a prime ideal p ◁R such that Qp

is irreducible, then also Q must be irreducible.
You will see in the homework what can be done if there is no prime
ideal p ◁R such that Qp is irreducible, but you have the strong
feeling that Q should be irreducible.
The biggest problem that prevents us from constructing the
quotient field of an arbitrary (commutative) ring R are the zero
divisors. Namely if we write a/b for some a, b ∈ R we do not only
have to exclude b = 0, but also every possible d1/2 such that
d1d2 = 0, i.e. the zero divisors, because they would eventually lead
to (1/d1)(1/d2) = 1/0.
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Localizations (环的局部化) I
The abstraction gives the following concept.
Definition
Given a ring (R,+, ·), then a multiplicative set is a nonempty
subset S ⊂ R that does not contain 0, contains all units R∗ ⊂ S,
and is closed under multiplication, i.e. S · S ⊂ S.

Example
1. The complements S = R \ p of prime ideals p ◁R are

multiplicative sets, because for a prime ideal we have that
ab ∈ p implies a ∈ p or b ∈ p and in particular 0 ∈ p thus
0 /∈ S.

2. For domains (such as the integers Z) (0) is a prime ideal and
we can thus choose S = R \ {0}.

The localization is now defined as follows.
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Localizations (环的局部化) II

Definition
Let R be a ring and S ⊂ R be a multiplicative subset. The
localization of R at S, denoted as S−1R is the set R × S/∼ with
elements denoted as a/s where a ∈ R and s ∈ S under the
equivalence relation r/s ∼ r′/s′ iff there is a t ∈ S such that

t(rs′ − r′s) = 0.

Addition is done via expansion to a common denominator, i.e.
a/s + b/t = (at + bs)/(st). Multiplication is done componentwise,
i.e. (a/s)(b/t) = (ab)/(st).
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Localizations (环的局部化) III
Proposition
The relation ∼ is an equivalence relation. a/s ∼ (at)/(st) and
addition and multiplication are representation independent and
thus S−1R a ring together with a ring homomorphism
i : R → S−1R : a 7→ a/1 that maps all elements of S ⊂ R to units.
It is obvious that this generalizes the definition of the field of
fractions in Proposition 2.3.3. The difference to the quotient field
of a domain is that R can have zero divisors.
Proof.
Reflexivity a/s ∼ a/s is clear with any t ∈ S, e.g. t = 1. Suppose
a/s ∼ b/s′ with t ∈ S, then t(bs − as′) = −t(as′ − bs) = 0, and for
transitivity assume that a/s ∼ a′/s′ via t ∈ S and a′/s′ ∼ a′′/s′′ via
t′ ∈ S, then
tt′s′(as′′ − a′′s) = t′s′′(t(as′ − a′s)) + ts(t′(a′s′′ − a′′s′)) = 0. The
second statement is obvious.
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Localizations (环的局部化) IV

In order to see that addition is representation independent, let
a/s ∼ a′/s′ via t and b/u ∼ b′/u′ via t′. Then
a/s + b/u = (au + bs)/(su) and a′/s′ + b′/u′ = (a′u′ + b′s′)/(s′u′).
The right hand expressions are equivalent via tt′, because
tt′[(au + bs)s′u′ − (a′u′ + b′s′)su] =
tt′[(as′ − a′s)uu′ + (bu′ − b′u)ss′] = 0. An analogous but simpler
computation leads to representative independence of the
multiplication.
It is obvious that i is a ring homomorphism. The inverse elements
of s are 1/s. This completes the proof.
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Localizations (环的局部化) V

Proposition
The above construction fulfills the universality condition that every
ring homomorphism ϕ : R → R′ that sends S to R′∗ extends
uniquely to S−1R.

Proof.
Remember that the elements of S−1R are generated by pairs a/s
with a ∈ R and s ∈ S. Since ϕ(s) ∈ R′∗ there are inverse elements
ϕ(s)−1 ∈ R′. We thus send a/s 7→ ϕ(a)ϕ(s)−1. It remains to check
that this is representation independent. Let thus a/s ∼ a′/s′ via
t ∈ S. We thus have t(as′ − a′s) = 0 ∈ R but since ϕ is a ring
homomorphism, we obtain ϕ(t)(ϕ(a)ϕ(s′)− ϕ(a′)ϕ(s)) = 0 ∈ R′.
Since ϕ(t), ϕ(s), and ϕ(s′) are invertible, we obtain
ϕ(a)ϕ(s)−1 = ϕ(a′)ϕ(s′)−1. The homomorphism property of the
extension of ϕ is now obvious. This completes the proof.
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Exercises

Exercise
Given the ring of integers R = Z and the multiplicative set
S = R \ (2). Determine the localization S−1R and show that it is
embedded into K[R] = Q. What is its image?
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Exercise
Show that the polynomial Q = x4 + 4x3 + 5x2 + 1 ∈ Z[x] is
irreducible in Q[x]. You may proceed as follows:

. Note that you cannot apply Eistenstein’s criterion directly;
a. localize the polynomial w.r.t. p = 2 and note that it factors.

This says, that one localization is not sufficient;
b. localize the polynomial w.r.t. p = 3 and note that it also

factors. Thus this localization is not sufficient either;
c. assume that Q factors in Q[x] as Q = fg and compare their

localizations for p = 2, 3 with the factors you obtained earlier.
Conclude that either f or g must have degree 4 and thus Q is
irreducible;

Next week we will start with Field extensions and Galois theory.
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