
Abstract algebra: Homework 9

Northwestern Polytechnic University

Due on Monday, Dec. 10th

2.3 Principal ideal domains

Exercise 2.3.2 (3P). Let (S, ·) be an abelian monoid (commutative semi-
group with neutral element id) that is cancellative, i.e. for every a, b, c ∈ S,
ab = ac implies b = c. Construct a group of fractions K[S] and state and
show its universal property.
Hint: The universal property should consider maps into any abelian group
(A, ·).

Extra Exercise 2.3.3 (5XP). Given a non-commutative (unital) integral
ring R (i.e. an associative Z-algebra with ab = 0 implies a = 0 or b = 0) that
fulfills the Ore condition: Every finite intersection of non-trivial principal
ideals is nontrivial. Show that the analogon of the field construction gives a
division algebra, i.e. S[R] := (R × R \ 0)/∼ where a/b ∼ c/d iff ad = cb (in
that order). Show that

0. ∼ is an equivalence relation;

a. the addition a/b + c/d = (af + bg)/p for a, b, c, d ∈ R, c, d 6= 0 and
p, f, g ∈ R \ 0 such that bf = p = dg is well-defined and forms an
abelian group. Note that you have to show existence of some (p, f, g) as
well as a/b+c/d ∼ a′/b′+c′/d′ for all pairs a/b ∼ a′/b′ and c/d ∼ c′/d′.
(What is the neutal element, the inverses?)

b. the multiplication (a/b) ∗ (c/d) = ã/d̃ for a, b, c, d ∈ R, b, c, d 6= 0, and
some ã, b̃, d̃ ∈ R with ã/b̃ ∼ a/b and b̃/d̃ ∼ c/d. Extend by (a/b) ∗
(0/d) = (0/1) and show that multiplication is also well-defined and
gives a (non-commutative) ring structure.

c. Show that S[R] is a division-ring generated by ı : R → S[R] : a 7→ a/1.
You can, e.g. show that (a/b)/(c/d) = ã/c̃ for a, b, c, d ∈ R with b, c, d 6=
0 and some ã, b̃, c̃ ∈ R \ 0 with a/b ∼ ã/b̃ and c/d ∼ c̃/b̃ is well-defined
and gives the inverse elements.

Exercise 2.3.4 (2P). Let R be a ring and ∂ : R[x] → R[x] : R → 0, x 7→ 1
the standard derivative. Show that

a. if p1 ∈ R[x] is a polynomial, p := (x − a)p1 ∈ R[x] with a ∈ R, then ∂p
has root a iff p1 has root a;

b. conclude that for p ∈ F [x] where F is a field, then the roots of gcd(p, ∂p)
are exactly the multiple roots of p. (This will be helpful in the section
about discriminants of polynomials.)
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Exercise 2.3.5 (3P). Let R be a domain and denote F := K[R] the field of
fractions of R.

a. Show that K[R[x] ] = F (x) where x is an indeterminate over R and F (x)
is the field of rational functions p/q for p, q ∈ F [x] and q 6= 0.

c. Show that F ((x)) := K[R[[x]] ] = F [[x], x−1] where F [[x], x−1] are the for-
mal Laurent series, i.e. the power series starting with a finite integer
possibly negative exponent.

Hint: Remember the geometric series, i.e. for |q| < 1, 1
1−q = 1 + q +

q2 + . . . and use this to invert a formal power series (in terms of power
series with finite coefficients).

d. Show that the embedding R[x] → R[[x]] induces an embedding F (x) →
F ((x)) that maps a rational function to a Laurent series. What element
is 1/(1 + x + x2) ∈ F (x) mapped to?

Exercise 2.3.8 (2P). Let (R[x], ∂) be a differential ring and R be an integral
domain. Show that ∂ extends uniquely to K[R[x] ] = F (x) with F = K[R]
and F (x) as in Exercise 2.3.5a. Express the constants Const(F (x)) in terms
of Const(R[x]).
Hint: Show the quotient rule using the product/Leibniz rule.

2.4 Unique Factorization Domains

Exercise 2.4.1 (2P). Compute the gcd and lcm of x2 + x− 1, x3 + x− 1,
and x4 + x2 − 1 over Q.

Exercise 2.4.2 (1P). Show that no poynomial ring in more than one inde-
terminate is a PID.

Exercise 2.4.4 (2P). Show that for every family (ai)i∈I of elements ai ∈ R of
a PID the greatest common divisor can be written as finite linear combination
gcd =

∑n
j=1 cjaij for some ij ∈ I, n ∈ N and cj ∈ R.

Exercise 2.4.6 (3P). Write down all irreducible polynomials in F2[x] of
degree 5.

Exercise 2.4.8 (2P). Write in partial fractions

x5 + 1

x4 + x2
∈ F2(x), (a)

x5 + 1

x4 + x2
∈ F3(x), (b)
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