Abstract algebra: Homework 9

Northwestern Polytechnic University Due on Monday, Dec. 10th

2.3 Principal ideal domains

Exercise 2.3.2 (3P). Let (S, \cdot) be an abelian monoid (commutative semi-group with neutral element id) that is cancellative, i.e. for every $a, b, c \in S$, ab = ac implies b = c. Construct a group of fractions K[S] and state and show its universal property.

Hint: The universal property should consider maps into any abelian group (A, \cdot) .

Extra Exercise 2.3.3 (5XP). Given a non-commutative (unital) integral ring R (i.e. an associative \mathbb{Z} -algebra with ab=0 implies a=0 or b=0) that fulfills the Ore condition: Every finite intersection of non-trivial principal ideals is nontrivial. Show that the analogon of the field construction gives a division algebra, i.e. $S[R] := (R \times R \setminus 0)/\sim$ where $a/b \sim c/d$ iff ad=cb (in that order). Show that

- **0.** \sim is an equivalence relation;
- a. the addition a/b + c/d = (af + bg)/p for $a, b, c, d \in R$, $c, d \neq 0$ and $p, f, g \in R \setminus 0$ such that bf = p = dg is well-defined and forms an abelian group. Note that you have to show existence of some (p, f, g) as well as $a/b + c/d \sim a'/b' + c'/d'$ for all pairs $a/b \sim a'/b'$ and $c/d \sim c'/d'$. (What is the neutal element, the inverses?)
- **b.** the multiplication $(a/b)*(c/d) = \tilde{a}/\tilde{d}$ for $a,b,c,d \in R$, $b,c,d \neq 0$, and some $\tilde{a},\tilde{b},\tilde{d} \in R$ with $\tilde{a}/\tilde{b} \sim a/b$ and $\tilde{b}/\tilde{d} \sim c/d$. Extend by (a/b)*(0/d) = (0/1) and show that multiplication is also well-defined and gives a (non-commutative) ring structure.
- **c**. Show that S[R] is a division-ring generated by $i: R \to S[R]: a \mapsto a/1$. You can, e.g. show that $(a/b)/(c/d) = \tilde{a}/\tilde{c}$ for $a,b,c,d \in R$ with $b,c,d \neq 0$ and some $\tilde{a},\tilde{b},\tilde{c} \in R \setminus 0$ with $a/b \sim \tilde{a}/\tilde{b}$ and $c/d \sim \tilde{c}/\tilde{b}$ is well-defined and gives the inverse elements.

Exercise 2.3.4 (2P). Let R be a ring and $\partial: R[x] \to R[x]: R \to 0, x \mapsto 1$ the standard derivative. Show that

- **a.** if $p_1 \in R[x]$ is a polynomial, $p := (x a)p_1 \in R[x]$ with $a \in R$, then ∂p has root a iff p_1 has root a;
- **b**. conclude that for $p \in F[x]$ where F is a field, then the roots of $gcd(p, \partial p)$ are exactly the multiple roots of p. (This will be helpful in the section about discriminants of polynomials.)

Exercise 2.3.5 (3P). Let R be a domain and denote F := K[R] the field of fractions of R.

- a. Show that K[R[x]] = F(x) where x is an indeterminate over R and F(x) is the field of rational functions p/q for $p, q \in F[x]$ and $q \neq 0$.
- c. Show that $F((x)) := K[R[x]] = F[[x], x^{-1}]$ where $F[[x], x^{-1}]$ are the formal Laurent series, i.e. the power series starting with a finite integer possibly negative exponent.

Hint: Remember the geometric series, i.e. for |q| < 1, $\frac{1}{1-q} = 1 + q + q^2 + \ldots$ and use this to invert a formal power series (in terms of power series with finite coefficients).

d. Show that the embedding $R[x] \to R[[x]]$ induces an embedding $F(x) \to F((x))$ that maps a rational function to a Laurent series. What element is $1/(1+x+x^2) \in F(x)$ mapped to?

Exercise 2.3.8 (2P). Let $(R[x], \partial)$ be a differential ring and R be an integral domain. Show that ∂ extends uniquely to K[R[x]] = F(x) with F = K[R] and F(x) as in Exercise 2.3.5a. Express the constants Const(F(x)) in terms of Const(R[x]).

Hint: Show the quotient rule using the product/Leibniz rule.

2.4 Unique Factorization Domains

Exercise 2.4.1 (2P). Compute the gcd and lcm of $x^2 + x - 1$, $x^3 + x - 1$, and $x^4 + x^2 - 1$ over \mathbb{Q} .

Exercise 2.4.2 (1P). Show that no poynomial ring in more than one indeterminate is a PID.

Exercise 2.4.4 (2P). Show that for every family $(a_i)_{i \in I}$ of elements $a_i \in R$ of a PID the greatest common divisor can be written as finite linear combination $\gcd = \sum_{j=1}^{n} c_j a_{i_j}$ for some $i_j \in I$, $n \in \mathbb{N}$ and $c_j \in R$.

Exercise 2.4.6 (3P). Write down all irreducible polynomials in $\mathbb{F}_2[x]$ of degree 5.

Exercise 2.4.8 (2P). Write in partial fractions

$$\frac{x^5+1}{x^4+x^2} \in \mathbb{F}_2(x),\tag{a}$$

$$\frac{x^5 + 1}{x^4 + x^2} \in \mathbb{F}_3(x),\tag{b}$$