Abstract algebra: Homework 9

Northwestern Polytechnic University

Due on Monday, Dec. 10"

2.3 Principal ideal domains

Exercise 2.3.2 (3P). Let (5,-) be an abelian monoid (commutative semi-
group with neutral element id) that is cancellative, i.e. for every a,b,c € S,
ab = ac implies b = ¢. Construct a group of fractions K[S] and state and
show its universal property.

Hint: The universal property should consider maps into any abelian group

(Aa )

Extra Exercise 2.3.3 (5XP). Given a non-commutative (unital) integral
ring R (i.e. an associative Z-algebra with ab = 0 implies a = 0 or b = 0) that
fulfills the Ore condition: Every finite intersection of non-trivial principal
ideals is nontrivial. Show that the analogon of the field construction gives a
division algebra, i.e. S[R] := (R x R\ 0)/~ where a/b ~ ¢/d iff ad = ¢b (in
that order). Show that

0. ~ is an equivalence relation;

a. the addition a/b + ¢/d = (af + bg)/p for a,b,c,d € R, ¢,d # 0 and
p, f,g € R\ 0 such that bf = p = dg is well-defined and forms an
abelian group. Note that you have to show existence of some (p, f, g) as
well as a/b+c/d ~ o' /b + /d for all pairs a/b ~ o' /b and ¢/d ~ ¢ /d'.
(What is the neutal element, the inverses?)

b. the multiplication (a/b) * (¢/d) = a/d for a,b,c,d € R, b,c,d # 0, and
some @,b,d € R with a/b ~ a/b and b/d ~ ¢/d. Extend by (a/b)
(0/d) = (0/1) and show that multiplication is also well-defined and
gives a (non-commutative) ring structure.

c. Show that S[R] is a division-ring generated by ¢: R — S[R] : a — a/1.
You can, e.g. show that (a/b)/(c/d) = a/¢for a,b,c,d € R with b, c,d #
0 and some a,b,¢ € R\ 0 with a/b ~ a/b and c¢/d ~ ¢/b is well-defined

and gives the inverse elements.

Exercise 2.3.4 (2P). Let R be aring and 0: R[z] — R[z] : R — 0,2 — 1
the standard derivative. Show that

a. if p; € R[z| is a polynomial, p := (x — a)p; € R[z] with a € R, then Op
has root a iff p; has root a;

b. conclude that for p € F[z] where F' is a field, then the roots of ged(p, dp)
are exactly the multiple roots of p. (This will be helpful in the section
about discriminants of polynomials.)



Exercise 2.3.5 (3P). Let R be a domain and denote F' := K[R] the field of
fractions of R.

a. Show that K[R[z]] = F(z) where z is an indeterminate over R and F'(x)
is the field of rational functions p/q for p,q € F[z] and g # 0.

c. Show that F((x)) := K[R[z]] = F|[z],z~!] where F[[x],z7!] are the for-
mal Laurent series, i.e. the power series starting with a finite integer
possibly negative exponent.

Hint: Remember the geometric series, i.e. for |q| < 1, l%q =1+q+

¢*+ ... and use this to invert a formal power series (in terms of power
series with finite coefficients).

d. Show that the embedding R[z] — R][[z]] induces an embedding F(x) —
F((x)) that maps a rational function to a Laurent series. What element
is 1/(1+ z + 2?) € F(x) mapped to?

Exercise 2.3.8 (2P). Let (R[], 0) be a differential ring and R be an integral
domain. Show that O extends uniquely to K[R[z]] = F(z) with F' = K[R)]
and F'(z) as in Exercise 2.3.5a. Express the constants Const(F'(z)) in terms
of Const(R[x]).

Hint: Show the quotient rule using the product/Leibniz rule.

2.4 Unique Factorization Domains

Exercise 2.4.1 (2P). Compute the ged and lem of 22 + 2 — 1, 23 + 2 — 1,
and z* 4 2% — 1 over Q.

Exercise 2.4.2 (1P). Show that no poynomial ring in more than one inde-
terminate is a PID.

Exercise 2.4.4 (2P). Show that for every family (a;);es of elements a; € R of
a PID the greatest common divisor can be written as finite linear combination
ged =377 ¢ja;; for some i; € I, n € N and ¢; € R.

Exercise 2.4.6 (3P). Write down all irreducible polynomials in Fy[z] of
degree 5.

Exercise 2.4.8 (2P). Write in partial fractions

x4+ 1
334 +Z’2 = FQ('I)’ (a)
x4+ 1
I4 +l’2 S F3<$>) (b)
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